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Abstract Bats host virulent zoonotic viruses without experiencing disease. A mechanistic
understanding of the impact of bats’ virus hosting capacities, including uniquely constitutive
immune pathways, on cellular-scale viral dynamics is needed to elucidate zoonotic emergence. We
carried out virus infectivity assays on bat cell lines expressing induced and constitutive immune
phenotypes, then developed a theoretical model of our in vitro system, which we fit to empirical
data. Best fit models recapitulated expected immune phenotypes for representative cell lines,
supporting robust antiviral defenses in bat cells that correlated with higher estimates for within-
host viral propagation rates. In general, heightened immune responses limit pathogen-induced
cellular morbidity, which can facilitate the establishment of rapidly-propagating persistent
infections within-host. Rapidly-transmitting viruses that have evolved with bat immune systems will
likely cause enhanced virulence following emergence into secondary hosts with immune systems
that diverge from those unique to bats.

Introduction

Bats have received much attention in recent years for their role as reservoir hosts for emerging viral
zoonoses, including rabies and related lyssaviruses, Hendra and Nipah henipaviruses, Ebola and Mar-
burg filoviruses, and SARS coronavirus (Calisher et al., 2006; Wang and Anderson, 2019). In most
non-Chiropteran mammals, henipaviruses, filoviruses, and coronaviruses induce substantial morbidity
and mortality, display short durations of infection, and elicit robust, long-term immunity in hosts sur-
viving infection (Nicholls et al., 2003; Hooper et al., 2001; Mahanty and Bray, 2004). Bats, by con-
trast, demonstrate no obvious disease symptoms upon infection with pathogens that are highly
virulent in non-volant mammals (Schountz et al., 2017) but may, instead, support viruses as long-
term persistent infections, rather than transient, immunizing pathologies (Plowright et al., 2016).
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elLife digest Bats can carry viruses that are deadly to other mammals without themselves
showing serious symptoms. In fact, bats are natural reservoirs for viruses that have some of the
highest fatality rates of any viruses that people acquire from wild animals — including rabies, Ebola
and the SARS coronavirus.

Bats have a suite of antiviral defenses that keep the amount of virus in check. For example, some
bats have an antiviral immune response called the interferon pathway perpetually switched on. In
most other mammals, having such a hyper-vigilant immune response would cause harmful
inflammation. Bats, however, have adapted anti-inflammatory traits that protect them from such
harm, include the loss of certain genes that normally promote inflammation. However, no one has
previously explored how these unique antiviral defenses of bats impact the viruses themselves.

Now, Brook et al. have studied this exact question using bat cells grown in the laboratory. The
experiments made use of cells from one bat species - the black flying fox — in which the interferon
pathway is always on, and another — the Egyptian fruit bat — in which this pathway is only activated
during an infection. The bat cells were infected with three different viruses, and then Brook et al.
observed how the interferon pathway helped keep the infections in check, before creating a
computer model of this response.

The experiments and model helped reveal that the bats’ defenses may have a potential downside
for other animals, including humans. In both bat species, the strongest antiviral responses were
countered by the virus spreading more quickly from cell to cell. This suggests that bat immune
defenses may drive the evolution of faster transmitting viruses, and while bats are well protected
from the harmful effects of their own prolific viruses, other creatures like humans are not.

The findings may help to explain why bats are often the source for viruses that are deadly in
humans. Learning more about bats’ antiviral defenses and how they drive virus evolution may help
scientists develop better ways to predict, prevent or limit the spread of viruses from bats to humans.
More studies are needed in bats to help these efforts. In the meantime, the experiments highlight
the importance of warning people to avoid direct contact with wild bats.

Recent research advances are beginning to shed light on the molecular mechanisms by which
bats avoid pathology from these otherwise virulent pathogens (Brook and Dobson, 2015). Bats
leverage a suite of species-specific mechanisms to limit viral load, which include host receptor
sequence incompatibilities for some bat-virus combinations (Ng et al., 2015; Takadate et al., 2020)
and constitutive expression of the antiviral cytokine, IFN-a, for others (Zhou et al., 2016). Typically,
the presence of viral RNA or DNA in the cytoplasm of mammalian cells will induce secretion of type |
interferon proteins (IFN-o. and IFN-B), which promote expression and translation of interferon-stimu-
lated genes (ISGs) in neighboring cells and render them effectively antiviral (Stetson and Medzhi-
tov, 2006). In some bat cells, the transcriptomic blueprints for this IFN response are expressed
constitutively, even in the absence of stimulation by viral RNA or DNA (Zhou et al., 2016). In non-fly-
ing mammals, constitutive IFN expression would likely elicit widespread inflammation and concomi-
tant immunopathology upon viral infection, but bats support unique adaptations to combat
inflammation (Zhang et al., 2013; Ahn et al., 2019; Xie et al., 2018; Pavlovich et al., 2018) that
may have evolved to mitigate metabolic damage induced during flight (Kacprzyk et al., 2017). The
extent to which constitutive IFN-o. expression signifies constitutive antiviral defense in the form of
functional IFN-o. protein remains unresolved. In bat cells constitutively expressing IFN-o, some pro-
tein-stimulated, downstream ISGs appear to be also constitutively expressed, but additional ISG
induction is nonetheless possible following viral challenge and stimulation of IFN-B (Zhou et al.,
2016; Xie et al., 2018). Despite recent advances in molecular understanding of bat viral tolerance,
the consequences of this unique bat immunity on within-host virus dynamics—and its implications
for understanding zoonotic emergence—have yet to be elucidated.

The field of ‘virus dynamics’ was first developed to describe the mechanistic underpinnings of
long-term patterns of steady-state viral load exhibited by patients in chronic phase infections with
HIV, who appeared to produce and clear virus at equivalent rates (Nowak and May, 2000;
Ho et al., 1995). Models of simple target cell depletion, in which viral load is dictated by a bottom-
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up resource supply of infection-susceptible host cells, were first developed for HIV (Perelson, 2002)
but have since been applied to other chronic infections, including hepatitis-C virus (Neumann et al.,
1998), hepatitis-B virus (Nowak et al., 1996) and cytomegalovirus (Emery et al., 1999). Recent
work has adopted similar techniques to model the within-host dynamics of acute infections, such as
influenza A and measles, inspiring debate over the extent to which explicit modeling of top-down
immune control can improve inference beyond the basic resource limitation assumptions of the tar-
get cell model (Baccam et al., 2006; Pawelek et al., 2012; Saenz et al., 2010; Morris et al., 2018).

To investigate the impact of unique bat immune processes on in vitro viral kinetics, we first under-
took a series of virus infection experiments on bat cell lines expressing divergent interferon pheno-
types, then developed a theoretical model elucidating the dynamics of within-host viral spread. We
evaluated our theoretical model analytically independent of the data, then fit the model to data
recovered from in vitro experimental trials in order to estimate rates of within-host virus transmission
and cellular progression to antiviral status under diverse assumptions of absent, induced, and consti-
tutive immunity. Finally, we confirmed our findings in spatially-explicit stochastic simulations of fitted
time series from our mean field model. We hypothesized that top-down immune processes would
overrule classical resource-limitation in bat cell lines described as constitutively antiviral in the litera-
ture, offering a testable prediction for models fit to empirical data. We further predicted that the
most robust antiviral responses would be associated with the most rapid within-host virus propaga-
tion rates but also protect cells against virus-induced mortality to support the longest enduring
infections in tissue culture.

Results

Virus infection experiments in antiviral bat cell cultures yield reduced
cell mortality and elongated epidemics

We first explored the influence of innate immune phenotype on within-host viral propagation in a
series of infection experiments in cell culture. We conducted plaque assays on six-well plate mono-
layers of three immortalized mammalian kidney cell lines: [1] Vero (African green monkey) cells,
which are IFN-defective and thus limited in antiviral capacity (Desmyter et al., 1968); [2] RoNi/7.1
(Rousettus aegyptiacus) cells which demonstrate idiosyncratic induced interferon responses upon
viral challenge (Kuzmin et al., 2017; Arnold et al., 2018; Biesold et al., 2011; Pavlovich et al.,
2018); and [3] PaKiTO1 (Pteropus alecto) cells which constitutively express IFN-o. (Zhou et al., 2016;
Crameri et al., 2009). To intensify cell line-specific differences in constitutive immunity, we carried
out infectivity assays with GFP-tagged, replication-competent vesicular stomatitis Indiana viruses:
rVSV-G, rVSV-EBOV, and rVSV-MARYV, which have been previously described (Miller et al., 2012;
Wong et al., 2010). Two of these viruses, rVSV-EBOV and rVSV-MARYV, are recombinants for which
cell entry is mediated by the glycoprotein of the bat-evolved filoviruses, Ebola (EBOV) and Marburg
(MARYV), thus allowing us to modulate the extent of structural, as well as immunological, antiviral
defense at play in each infection. Previous work in this lab has demonstrated incompatibilities in the
NPC1 filovirus receptor which render PaKiTO1 cells refractory to infection with rVSV-MARV (Ng and
Chandrab, 2018, Unpublished results), making them structurally antiviral, over and above their con-
stitutive expression of IFN-a. All three cell lines were challenged with all three viruses at two multi-
plicities of infection (MOI): 0.001 and 0.0001. Between 18 and 39 trials were run at each cell-virus-
MOI combination, excepting rVSV-MARYV infections on PaKiTO1 cells at MOI = 0.001, for which only
eight trials were run (see Materials and methods; Figure 1—figure supplements 1-
3, Supplementary file 1).

Because plaque assays restrict viral transmission neighbor-to-neighbor in two-dimensional cellular
space (Howat et al., 2006), we were able to track the spread of GFP-expressing virus-infected cells
across tissue monolayers via inverted fluorescence microscopy. For each infection trial, we monitored
and re-imaged plates for up to 200 hr of observations or until total monolayer destruction, proc-
essed resulting images, and generated a time series of the proportion of infectious-cell occupied
plate space across the duration of each trial (see Materials and methods). We used generalized addi-
tive models to infer the time course of all cell culture replicates and construct the multi-trial dataset
to which we eventually fit our mechanistic transmission model for each cell line-virus-specific combi-
nation (Figure 1; Figure 1—figure supplements 1-5).
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All three recombinant vesicular stomatitis viruses (rVSV-G, rVSV-EBOV, and rVSV-MARYV) infected
Vero, RoNi/7.1, and PaKiTO01 tissue cultures at both focal MOls. Post-invasion, virus spread rapidly
across most cell monolayers, resulting in virus-induced epidemic extinction. Epidemics were less
severe in bat cell cultures, especially when infected with the recombinant filoviruses, rVSV-EBOV and
rVSV-MARV. Monolayer destruction was avoided in the case of rVSV-EBOV and rVSV-MARYV infec-
tions on PaKiT01 cells: in the former, persistent viral infection was maintained throughout the 200 hr
duration of each experiment, while, in the latter, infection was eliminated early in the time series,
preserving a large proportion of live, uninfectious cells across the duration of the experiment. We
assumed this pattern to be the result of immune-mediated epidemic extinction (Figure 1). Patterns
from MOI = 0.001 were largely recapitulated at MOI = 0.0001, though at somewhat reduced total
proportions (Figure 1—figure supplement 5).

A theoretical model fit to in vitro data recapitulates expected immune
phenotypes for bat cells

We next developed a within-host model to fit to these data to elucidate the effects of induced and
constitutive immunity on the dynamics of viral spread in host tissue (Figure 1). The compartmental
within-host system mimicked our two-dimensional cell culture monolayer, with cells occupying five
distinct infection states: susceptible (S), antiviral (A), exposed (E), infectious (I), and dead (D). We
modeled exposed cells as infected but not yet infectious, capturing the ‘eclipse phase’ of viral inte-
gration into a host cell which precedes viral replication. Antiviral cells were immune to viral infection,
in accordance with the ‘antiviral state’ induced from interferon stimulation of ISGs in tissues adjacent
to infection (Stetson and Medzhitov, 2006). Because we aimed to translate available data into
modeled processes, we did not explicitly model interferon dynamics but instead scaled the rate of
cell progression from susceptible to antiviral (p) by the proportion of exposed cells (globally) in the
system. In systems permitting constitutive immunity, a second rate of cellular acquisition of antiviral
status (¢) additionally scaled with the global proportion of susceptible cells in the model. Compared
with virus, IFN particles are small and highly diffusive, justifying this global signaling assumption at
the limited spatial extent of a six-well plate and maintaining consistency with previous modeling
approximations of IFN signaling in plaque assay (Howat et al., 2006).

To best represent our empirical monolayer system, we expressed our state variables as propor-
tions (Ps, Ps, Pg, P;, and Pp), under assumptions of frequency-dependent transmission in a well-
mixed population (Keeling and Rohani, 2008), though note that the inclusion of P (representing
the proportion of dead space in the modeled tissue) had the functional effect of varying transmission
with infectious cell density. This resulted in the following system of ordinary differential equations:

dPg
T:ZbPD(PS+ PA)—BPspl—ups—pPEPs—€P5+CPA (1)
dpP.
d—tA:PPEPs-F ePg —cPy — Py )
dP
= =BPsPI—oPp—yuPg @3)
dpP
—r=0Pr—aP— P, (@)
dPp
5 = MPs+Pet Pt Py) +aPi—bPp(Ps+ Py) (5)

We defined ‘induced immunity’ as complete, modeling all cells as susceptible to viral invasion at
disease-free equilibrium, with defenses induced subsequent to viral exposure through the term p. By
contrast, we allowed the extent of constitutive immunity to vary across the parameter range of ¢ >
0, defining a ’constitutive’ system as one containing any antiviral cells at disease-free equilibrium. In
fitting this model to tissue culture data, we independently estimated both p and ¢, as well as the
cell-to-cell transmission rate, B, for each cell-virus combination. Since the extent to which
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Figure 1. Fitted time series of infectious cell proportions from mean field model for rVSV-G, rVSV-EBOV, and rVSV-MARY infections (columns) on Vero,
RoNi/7.1, and PaKiTO1 cell lines (rows) at MOI = 0.001. Results are shown for the best fit immune absent model on Vero cells, induced immunity model
on RoNi/7.1 cells, and constitutive (for rVSV-VSVG and rVSV-EBOV) and induced (for rVSV-MARV) immunity models on PaKiTO1 cells. Raw data across all
trials are shown as open circles (statistical smoothers from each trial used for fitting are available in Figure 1—figure supplements 2-3). Model output
is shown as a solid crimson line (95% confidence intervals by standard error = red shading). Panel background corresponds to empirical outcome of the
average stochastic cell culture trial (persistent infection = white; virus-induced epidemic extinction = gray; immune-mediated epidemic

extinction = black). Parameter values are listed in Table 1 and Supplementary file 4. Results for absent/induced/constitutive fitted models across all
cell lines are shown in Figure 1—figure supplement 4 (MOl = 0.001) and Figure 1—figure supplement 5 (MOl = 0.0001).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Cell culture models of viral propagation.

Figure supplement 2. Time series data to which mean field mechanistic models were fit, across rVSV-G (left), rVSV-EBOV (middle), and rVSV-MARV
(right) infections on Vero, RoNi/7.1, and PaKiTO1 cell lines, at MOI = 0.001.

Figure supplement 3. Time series data to which mean field mechanistic models were fit, across rVSV-G (left), rVSV-EBOV (middle), and rVSV-MARV
(right) infections on Vero, RoNi/7.1, and PaKiT01 cell lines, at MOI = 0.0001.

Figure supplement 4. Figure replicates Figure 1 (main text) but includes all output across mean field model fits assuming (A) absent immunity, (B)
induced immunity, and (C) constitutive immunity.

Figure supplement 5. Figure replicates Figure 1—figure supplement 4 exactly but shows model fits and data for all cell-virus combinations at
MOI = 0.0001.

Figure supplement 6. [FN gene expression in bat cells at baseline and upon viral stimulation.

Figure supplement 7. Curve fits to control data for standard birth (b = .025) and natural mortality (1 = 17, 137, 35 hours for, respectively, Vero, RoNi/7.1,
and PaKiTO1 cell lines) rates across all three cell lines.
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constitutively-expressed IFN-o is constitutively translated into functional protein is not yet known for
bat hosts (Zhou et al., 2016), this approach permitted our tissue culture data to drive modeling
inference: even in PaKiTO1 cell lines known to constitutively express IFN-o, the true constitutive
extent of the system (i.e. the quantity of antiviral cells present at disease-free equilibrium) was
allowed to vary through estimation of . For the purposes of model-fitting, we fixed the value of ¢,
the return rate of antiviral cells to susceptible status, at 0. The small spatial scale and short time
course (max 200 hours) of our experiments likely prohibited any return of antiviral cells to susceptible
status in our empirical system; nonetheless, we retained the term ¢ in analytical evaluations of our
model because regression from antiviral to susceptible status is possible over long time periods in
vitro and at the scale of a complete organism (Radke et al., 1974, Rasmussen and Farley, 1975;
Samuel and Knutson, 1982).

Before fitting to empirical time series, we undertook bifurcation analysis of our theoretical model
and generated testable hypotheses on the basis of model outcomes. From our within-host model
system (Equation 1-5), we derived the following expression for Ry, the pathogen basic reproduction
number (Supplementary file 2):

Bo(b— p)(c+ p)

blot+ )@+ m)(ctute) ©

Ro=

Pathogens can invade a host tissue culture when Ry>1. Rapid rates of constitutive antiviral acquisi-
tion (¢) will drive Ry<1: tissue cultures with highly constitutive antiviral immunity will be therefore
resistant to virus invasion from the outset. Since, by definition, induced immunity is stimulated fol-
lowing initial virus invasion, the rate of induced antiviral acquisition (p) is not incorporated into the
equation for Ry; while induced immune processes can control virus after initial invasion, they cannot
prevent it from occurring to begin with. In cases of fully induced or absent immunity (¢ =0), the Ry
equation thus reduces to a form typical of the classic SEIR model:

Ro— Bo(b—p) @
blatm)(@+ )

At equilibrium, the theoretical, mean field model demonstrates one of three infection states:
endemic equilibrium, stable limit cycles, or no infection (Figure 2). Respectively, these states approx-
imate the persistent infection, virus-induced epidemic extinction, and immune-mediated epidemic
extinction phenotypes previously witnessed in tissue culture experiments (Figure 1). Theoretically,
endemic equilibrium is maintained when new infections are generated at the same rate at which
infections are lost, while limit cycles represent parameter space under which infectious and suscepti-
ble populations are locked in predictable oscillations. Endemic equilibria resulting from cellular
regeneration (i.e. births) have been described in vivo for HIV (Coffin, 1995) and in vitro for herpesvi-
rus plaque assays (Howat et al., 2006), but, because they so closely approach zero, true limit cycles
likely only occur theoretically, instead yielding stochastic extinctions in empirical time series.

Bifurcation analysis of our mean field model revealed that regions of no infection (pathogen
extinction) were bounded at lower threshold (Branch point) values for B, below which the pathogen
was unable to invade. We found no upper threshold to invasion for B under any circumstances (i.e. B
high enough to drive pathogen-induced extinction), but high B values resulted in Hopf bifurcations,
which delineate regions of parameter space characterized by limit cycles. Since limit cycles so closely
approach zero, high Bs recovered in this range would likely produce virus-induced epidemic extinc-
tions under experimental conditions. Under more robust representations of immunity, with higher
values for either or both induced (p) and constitutive (¢) rates of antiviral acquisition, Hopf bifurca-
tions occurred at increasingly higher values for B, meaning that persistent infections could establish
at higher viral transmission rates (Figure 2). Consistent with our derivation for Ry, we found that the
Branch point threshold for viral invasion was independent of changes to the induced immune param-
eter (p) but saturated at high values of ¢ that characterize highly constitutive immunity (Figure 3).

We next fit our theoretical model by least squares to each cell line-virus combination, under
absent, induced, and constitutive assumptions of immunity. In general, best fit models recapitulated
expected outcomes based on the immune phenotype of the cell line in question, as described in the
general literature (Table 1, Supplementary file 4). The absent immune model offered the most
accurate approximation of IFN-deficient Vero cell time series, the induced immune model best
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Figure 2. Two parameter bifurcations of the mean field model, showing variation in the transmission rate, B, against variation in the pathogen-induced
mortality rate, o, under diverse immune assumptions. Panel (A) depicts dynamics under variably constitutive immunity, ranging from absent (left: € = 0)
to high (right: € = .0025). In all panel (A) plots, the rate of induced immune antiviral acquisition (p) was fixed at 0.01. Panel (B) depicts dynamics under
variably induced immunity, ranging from absent (left: p=0) to high (right: p=1). In all panel (B) plots, the rate of constitutive antiviral acquisition (¢) was
fixed at 0.0001 Branch point curves are represented as solid lines and Hopf curves as dashed lines. White space indicates endemic equilibrium
(persistence), gray space indicates limit cycles, and black space indicates no infection (extinction). Other parameter values for equilibrium analysis were
fixed at: b = .025, u = .001, 6 = 1/6, ¢ = 0. Special points from bifurcations analyses are listed in Supplementary file 3.

recovered the RoNi/7.1 cell trials, and, in most cases, the constitutive immune model most closely
recaptured infection dynamics across constitutively IFN-a-expressing PaKiTO1 cell lines (Figure 1,
Figure 1—figure supplements 4-5, Supplementary file 4). Ironically, the induced immune model
offered a slightly better fit than the constitutive to rVSV-MARV infections on the PaKiTO1 cell line
(the one cell line-virus combination for which we know a constitutively antiviral cell-receptor incom-
patibility to be at play). Because constitutive immune assumptions can prohibit pathogen invasion
(Ro<1), model fits to this time series under constitutive assumptions were handicapped by overesti-
mations of ¢, which prohibited pathogen invasion. Only by incorporating an exceedingly rapid rate
of induced antiviral acquisition could the model guarantee that initial infection would be permitted
and then rapidly controlled.
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Figure 3. Two parameter bifurcations of the mean field model, showing variation in the transmission rate, B, against variation in: (A) the induced
immunity rate of antiviral acquisition (p) and (B) the constitutive immunity rate of antiviral acquisition (). Panels show variation in the extent of immunity,
from absent (left) to high (right). Branch point curves are represented as solid lines and Hopf curves as dashed lines. White space indicates endemic
equilibrium (persistence), gray space indicates limit cycling, and black space indicates no infection (extinction). Other parameter values for equilibrium
analysis were fixed at: b = .025, u = .001, 6 = 1/6, a0 = 1/6, ¢ = 0. Special points from bifurcations analyses are listed in Supplementary file 3.

Robust immunity is linked to rapid within-host virus transmission rates
in fitted models

In fitting our theoretical model to in vitro data, we estimated the within-host virus transmission rate
(B) and the rate(s) of cellular acquisition to antiviral status (p or p + ¢) (Table 1, Supplementary file
4). Under absent immune assumptions, p and ¢ were fixed at 0 while B was estimated; under induced
immune assumptions, ¢ was fixed at O while p and B were estimated; and under constitutive immune
assumptions, all three parameters (p, ¢, and B) were simultaneously estimated for each cell-virus
combination. Best fit parameter estimates for MOI=0.001 data are visualized in conjunction with B —
p and B - ¢ bifurcations in Figure 4; all general patterns were recapitulated at lower values for 3 on
MOI=0.0001 trials (Figure 4—figure supplement 1).

As anticipated, the immune absent model (a simple target cell model) offered the best fit to IFN-
deficient Vero cell infections (Figure 4, Table 1; Supplementary file 4). Among Vero cell trials, infec-
tions with rVSV-G produced the highest B estimates, followed by infections with rVSV-EBOV and
rVSV-MARV. Best fit parameter estimates on Vero cell lines localized in the region of parameter
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Table 1. Optimized parameters from best fit deterministic model and spatial approximation at MOI = 0.001

AIC reduction 5 p ] Mean field Spatial
Cell line Virus Immune assumption from next-best model Antiviral rate [lci — uci] * [lci - uci] * [lei —uci] * Ro B
Vero rVSV-G Absent 2 0 0[0-0] 0 [0-0] 2.44 8.73 24.418
[1.52-3.34]
r'VSV-EBOV  Absent 2 0 0 [0-0] 0 [0-0] 1.5 5.42 14.996
[1.06-1.94]
r'VSV-MARV  Absent 2 0 0[0-0] 0 [0-0] 0.975 3.45 9.752
[0.558-1.39]
RoNi/7.1 rVSV-G Induced 2 7.03 x 107°  0[0-0] 0.089 2.47 10.91 24.705
[0-0.432] [1.49-3.45]
r'VSV-EBOV  Induced 2.01 2.87 x 107°  0[0-0] 0.0363 0.685 3.04 6.849
[0-0.343] [0.451-0.919]
r'VSV-MARV  Induced 2 1.40 x 107°  0[0-0] 0.0177 1.23 5.48 12.324
[0-0.257] [0.917-1.55]
PaKiTO1 rVSV-G Constitutive 29.9 .00209 0.00602 8.26 x 1078 3.45 6.20 34.516
[0-0.019]  [0-4.75 x 1077] [1.07-5.84]
rVSV-EBOV Constitutive 27.9 .00499 0.0478 446 x 1078 34.5 18.82 344.821
[0-0.0958] [0-4.37 x 1077] [28.7-40.2]
r'VSV-MARV  Induced 2 .00687 0[0-0] 13.1 3.25 8.83 32.452
[0-37.9] [0-41.3]

Improvement in AIC from next best model for same cell line-virus-MOI combination. All 8-AIC are reported in Supplementary file 4.

“Ici = lower and uci = upper 95% confidence interval. No confidence interval is shown for spatial B which was fixed at 10 times the estimated mean for the

mean field model fits when paired with equivalent values of € and p.
All other parameters were fixed at: b = 0.025 (mean field), 0.15 (spatial); oo = 1/6; ¢ = 0; w = 1/121 (Vero), 1/191 (RoNi/7.1), and 1/84 (PaKiTO1).

space corresponding to theoretical limit cycles, consistent with observed virus-induced epidemic
extinctions in stochastic tissue cultures.

In contrast to Vero cells, the induced immunity model offered the best fit to all RoNi/7.1 data,
consistent with reported patterns in the literature and our own validation by gPCR (Table 1; Fig-
ure 1—figure supplement 6; Arnold et al., 2018; Kuzmin et al., 2017, Biesold et al., 2011;
Pavlovich et al., 2018). As in Vero cell trials, we estimated highest B values for rVSV-G infections on
RoNi/7.1 cell lines but here recovered higher B estimates for rVSV-MARV than for rVSV-EBOV. This
reversal was balanced by a higher estimated rate of acquisition to antiviral status (p) for rVSV-EBOV
versus rVSV-MARV. In general, we observed that more rapid rates of antiviral acquisition (either
induced, p, constitutive, ¢, or both) correlated with higher transmission rates (). When offset by p, B
values estimated for RoNi/7.1 infections maintained the same amplitude as those estimated for
immune-absent Vero cell lines but caused gentler epidemics and reduced cellular mortality (Fig-
ure 1). RoNi/7.1 parameter estimates localized in the region corresponding to endemic equilibrium
for the deterministic, theoretical model (Figure 4), yielding less acute epidemics which nonetheless
went extinct in stochastic experiments.

Finally, rVSV-G and rVSV-EBOV trials on PaKiTO1 cells were best fit by models assuming constitu-
tive immunity, while rVSV-MARYV infections on PaKiTO1 were matched equivalently by models assum-
ing either induced or constitutive immunity—with induced models favored over constitutive in AIC
comparisons because one fewer parameter was estimated (Figure 1—figure supplements 4—
5; Supplementary file 4). For all virus infections, PaKiTO1 cell lines yielded B estimates a full order of
magnitude higher than Vero or RoNi/7.1 cells, with each B balanced by an immune response (either
p, or p combined with ¢) also an order of magnitude higher than that recovered for the other cell
lines (Figure 4; Table 1). As in RoNi/7.1 cells, PaKiTO1 parameter fits localized in the region corre-
sponding to endemic equilibrium for the deterministic theoretical model. Because constitutive
immune processes can actually prohibit initial pathogen invasion, constitutive immune fits to rVSV-
MARYV infections on PaKiTO1 cell lines consistently localized at or below the Branch point threshold
for virus invasion (Ry = 1). During model fitting for optimization of ¢, any parameter tests of ¢ values
producing Ryo<1 resulted in no infection and, consequently, produced an exceedingly poor fit to
infectious time series data. In all model fits assuming constitutive immunity, across all cell lines,

Brook et al. eLife 2020;9:48401. DOI: https://doi.org/10.7554/eLife.48401 9 of 24


https://doi.org/10.7554/eLife.48401

LIFE

Ecology | Epidemiology and Global Health

absent
immunity

o

N
N

transmission,

-

o-

Cell

. Vero
A RoNi/7.1

B PakiTo

Curve
Branch

Hopf

Virus
rVSv-G
® rvVsSV-EBOV
® rVSV-MARV

transmission, B

transmission,

w
1

N
1

-
1

0_—

induced immunity |

A
A

001 1 1 10

.00001 _
induced antiviral acquisition, p

w
o
1

N
o
1

-
o
1

constitutive immunity

]

00001 001 K
constitutive antiviral acquisition, €

Figure 4. Best fit parameter estimates for B and p or € from mean-field model fits to MOI=0.001 time series data, atop (A,B)B—p and (C) B -¢
bifurcation. Fits and bifurcations are grouped by immune phenotype: (A) absent; (B) induced; (C) constitutive immunity, with cell lines differentiated by
shape (Vero=circles; RoNi/7.1 = triangles; PaKiTO1=squares) and viral infections by color (rVSV-G = green, rVSV-EBOV = magenta, rVSV-MARV = blue).
Note that y-axis values are ten-fold higher in panel (C). Branch point curves (solid lines) and Hopf curves (dashed lines) are reproduced from Figure 3.
White space indicates endemic equilibrium (pathogen persistence), gray space indicates limit cycling (virus-induced epidemic extinction), and black
space indicates no infection (immune-mediated pathogen extinction). In panel (A) and (B), ¢ is fixed at O; in panel (C), p is fixed at 5x1078 for bifurcation
curves and estimated at 4x1078 and 8x1078 for r'VSV-EBOV and rVSV-G parameter points, respectively. Other parameter values were fixed at: b = .025,
w=0.001,06=1/6, 0= 1/6,and c = 0 across all panels. Raw fitted values and corresponding 95% confidence intervals for B, p, and ¢, background
parameter values, and AIC recovered from model fit, are reported in Supplementary file 4. Parameter fits at MOI=0.0001 are visualized in Figure 4—

figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Best fit parameter estimates for B and p or € from mean-field model fits to MOI=0.0001 time series data, atop (A,B) B — p and (C)

B — € bifurcation.

parameter estimates for p and ¢ traded off, with one parameter optimized at values approximating
zero, such that the immune response was modeled as almost entirely induced or entirely constitutive
(Table 1, Supplementary file 4). For RoNi/7.1 cells, even when constitutive immunity was allowed,
the immune response was estimated as almost entirely induced, while for rVSV-G and rVSV-EBOV
fits on PaKiTO1 cells, the immune response optimized as almost entirely constitutive. For rVSV-MARV
on PaKiTO1 cells, however, estimation of p was high under all assumptions, such that any additional
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antiviral contributions from ¢ prohibited virus from invading at all. The induced immune model thus
produced a more parsimonious recapitulation of these data because virus invasion was always per-
mitted, then rapidly controlled.

Antiviral cells safeguard live cells against rapid cell mortality to
elongate epidemic duration in vitro

In order to compare the relative contributions of each cell line’s disparate immune processes to epi-
demic dynamics, we next used our mean field parameter estimates to calculate the initial ‘antiviral
rate’—the initial accumulation rate of antiviral cells upon virus invasion for each cell-virus-MOI combi-
nation—based on the following equation:

Antiviral Rate = pPpP; — €P; (8

where Pg was calculated from the initial infectious dose (MOI) of each infection experiment and Pg
was estimated at disease-free equilibrium:

Pp=1—e MO ©9)
_ (b=p)(c+p)
Ps= b(c+p+e) (10)

Because p and ¢ both contribute to this initial antiviral rate, induced and constitutive immune
assumptions are capable of yielding equally rapid rates, depending on parameter fits. Indeed, under
fully induced immune assumptions, the induced antiviral acquisition rate (p) estimated for rVSV-
MARYV infection on PaKiTO1 cells was so high that the initial antiviral rate exceeded even that esti-
mated under constitutive assumptions for this cell-virus combination (Supplementary file 4). In real-
ity, we know that NPC1 receptor incompatibilities make PaKiTO1 cell lines constitutively refractory to
rVSV-MARYV infection (Ng and Chandrab, 2018, Unpublished results) and that PaKiTO1 cells also con-
stitutively express the antiviral cytokine, IFN-c.. Model fitting results suggest that this constitutive
expression of IFN-o. may act more as a rapidly inducible immune response following virus invasion
than as a constitutive secretion of functional IFN-o protein. Nonetheless, as hypothesized, PaKiTO1
cell lines were by far the most antiviral of any in our study—with initial antiviral rates estimated sev-
eral orders of magnitude higher than any others in our study, under either induced or constitutive
assumptions (Table 1; Supplementary file 4). RoNi/7.1 cells displayed the second-most-pronounced
signature of immunity, followed by Vero cells, for which the initial antiviral rate was essentially zero
even under forced assumptions of induced or constitutive immunity (Table 1; Supplementary file 4).

Using fitted parameters for 8 and ¢, we additionally calculated Ry, the basic reproduction number
for the virus, for each cell line-virus-MOI combination (Table 1; Supplementary file 4). We found
that Rp was essentially unchanged across differing immune assumptions for RoNi/7.1 and Vero cells,
for which the initial antiviral rate was low. In the case of PaKiTO1 cells, a high initial antiviral rate
under either induced or constitutive immunity resulted in a correspondingly high estimation of B
(and, consequently, Ry) which still produced the same epidemic curve that resulted from the much
lower estimates for B and Ry paired with absent immunity. These findings suggest that antiviral
immune responses protect host tissues against virus-induced cell mortality and may facilitate the
establishment of more rapid within-host transmission rates.

Total monolayer destruction occurred in all cell-virus combinations excepting rVSV-EBOV infec-
tions on RoNi/7.1 cells and rVSV-EBOV and rVSV-MARYV infections on PaKiTO1 cells. Monolayer
destruction corresponded to susceptible cell depletion and epidemic turnover where R-effective (the
product of Ry and the proportion susceptible) was reduced below one (Figure 5). For rVSV-EBOV
infections on RoNi/7.1, induced antiviral cells safeguarded remnant live cells, which birthed new sus-
ceptible cells late in the time series. In rVSV-EBOV and rVSV-MARYV infections on PaKiTO1 cells, this
antiviral protection halted the epidemic (Figure 5; R-effective <1) before susceptibles fully declined.
In the case of rVSV-EBOV on PaKiT01, the birth of new susceptibles from remnant live cells pro-
tected by antiviral status maintained late-stage transmission to facilitate long-term epidemic persis-
tence. Importantly, under fixed parameter values for the infection incubation rate (c) and infection-
induced mortality rate (o), models were unable to reproduce the longer-term infectious time series
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Figure 5. Fitted time series of susceptible (green shading) and antiviral (blue shading) cell proportions from the mean field model for rVSV-G, rVSV-
EBOV, and rVSV-MARY infections (columns) on Vero, RoNi/7.1, and PaKiT01 cell lines (rows) at MOI = 0.001. Results are shown for the best fit immune
absent model on Vero cells, induced immunity model on RoNi/7.1 cells and constitutive ('VSV-G and rVSV-EBOV) and induced (rVSV-MARV) immune
models on PaKiTO1 cells. Combined live, uninfectious cell populations (S + A + E) are shown in tan shading, with raw live, uninfectious cell data from
Hoechst stains visualized as open circles. The right-hand y-axis corresponds to R-effective (pink solid line) across each time series; R-effective = 1 is a
pink dashed, horizontal line. Panel background corresponds to empirical outcome of the average stochastic cell culture trial (persistent

infection = white; virus-induced epidemic extinction = gray; immune-mediated epidemic extinction = black). Parameter values are listed in
Supplementary file 4 and results for absent/induced/constitutive fitted models across all cell lines in Figure 5—figure supplement 1 (MOl = 0.001)
and Figure 5—figure supplement 2 (MOl = 0.0001).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Figure replicates Figure 5 (main text) but includes all output across mean field model fits assuming (A) absent immunity, (B)
induced immunity, and (C) constitutive immunity.

Figure supplement 2. Figure replicates Figure 5—figure supplement 1 exactly but shows model fits and data for all cell-virus combinations at
MOI = 0.0001.

Figure supplement 3. Spatial model state variable outputs, fit to MOI = 0.001 data only, for all 27 unique cell line - virus - immune assumption
combinations: (A) absent immunity, (B) induced immunity, and (C) constitutive immunity.

captured in data from rVSV-EBOV infections on PaKiT01 cell lines without incorporation of cell births,
an assumption adopted in previous modeling representations of IFN-mediated viral dynamics in tis-
sue culture (Howat et al., 2006). In our experiments, we observed that cellular reproduction took
place as plague assays achieved confluency.
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Finally, because the protective effect of antiviral cells is more clearly observable spatially, we con-
firmed our results by simulating fitted time series in a spatially-explicit, stochastic reconstruction of
our mean field model. In spatial simulations, rates of antiviral acquisition were fixed at fitted values
for p and & derived from mean field estimates, while transmission rates () were fixed at values ten
times greater than those estimated under mean field conditions, accounting for the intensification of
parameter thresholds permitting pathogen invasion in local spatial interactions (see Materials and
methods; Videos 1-3; Figure 5—figure supplement 3; Supplementary file 5; Webb et al., 2007).
In immune capable time series, spatial antiviral cells acted as ‘refugia’ which protected live cells from
infection as each initial epidemic wave ‘washed’ across a cell monolayer. Eventual birth of new sus-
ceptibles from these living refugia allowed for sustained epidemic transmission in cases where some
infectious cells persisted at later timepoints in simulation (Videos 1-3; Figure 5—figure supplement
3).

Discussion

Bats are reservoirs for several important emerging zoonoses but appear not to experience disease
from otherwise virulent viral pathogens. Though the molecular biological literature has made great
progress in elucidating the mechanisms by which bats tolerate viral infections (Zhou et al., 2016;
Ahn et al., 2019; Xie et al., 2018; Pavlovich et al., 2018; Zhang et al., 2013), the impact of unique
bat immunity on virus dynamics within-host has not been well-elucidated. We used an innovative
combination of in vitro experimentation and within-host modeling to explore the impact of unique
bat immunity on virus dynamics. Critically, we found that bat cell lines demonstrated a signature of
enhanced interferon-mediated immune response, of either constitutive or induced form, which
allowed for establishment of rapid within-host, cell-to-cell virus transmission rates (). These results
were supported by both data-independent bifurcation analysis of our mean field theoretical model,
as well as fitting of this model to viral infection time series established in bat cell culture. Addition-
ally, we demonstrated that the antiviral state induced by the interferon pathway protects live cells
from mortality in tissue culture, resulting in in vitro epidemics of extended duration that enhance the
probability of establishing a long-term persistent infection. Our findings suggest that viruses evolved
in bat reservoirs possessing enhanced IFN capabilities could achieve more rapid within-host trans-
mission rates without causing pathology to their hosts. Such rapidly-reproducing viruses would likely
generate extreme virulence upon spillover to hosts lacking similar immune capacities to bats.

To achieve these results, we first developed a novel, within-host, theoretical model elucidating
the effects of unique bat immunity, then undertook bifurcation analysis of the model’s equilibrium
properties under immune absent, induced, and constitutive assumptions. We considered a cell line
to be constitutively immune if possessing any number of antiviral cells at disease-free equilibrium
but allowed the extent of constitutive immunity to vary across the parameter range for ¢, the consti-
tutive rate of antiviral acquisition. In deriving the
equation for Ry, the basic reproduction number,
which defines threshold conditions for virus inva-  Yeime ™" P—
sion of a tissue (Ry>1), we demonstrated how ‘
the invasion threshold is elevated at high values
of constitutive antiviral acquisition, . Constitu-
tive immune processes can thus prohibit patho-
gen invasion, while induced responses, by
definition, can only control infections post-hoc.
Once thresholds for pathogen invasion have
been met, assumptions of constitutive immunity
will limit the cellular mortality (virulence) incurred
at high transmission rates. Regardless of mecha-
nism (induced or constitutive), interferon-stimu-

=nea

Video 1. Two hundred hour time series of spatial
stochastic model for rVSV-EBOV infection on 10,000
cell grid for PaKiTO1, assuming conditions of absent
lated antiviral cells appear to play a key role in immunity: (A) spatial spread of infection, (B) time series
maintaining longer term or persistent infections  of state variables. Parameter values are listed in

by safeguarding susceptible cells from rapid Supplementary file 4.
infection and concomitant cell death. https://elifesciences.org/articles/48401#video]
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Video S2. Induced Immunity

'Video S3. Constitutive Immunit
A Cell space B. Time series unity

A.Cell space B. Time series

Video 2. Two hundred hour time series of spatial Video 3. Two hundred hour time series of spatial
stochastic model for rVSV-EBOV infection on 10,000 stochastic model for rVSV-EBOV infection on 10,000
cell grid for PaKiTO1, assuming conditions of induced cell grid for PaKiTO1, assuming conditions of

immunity: (A) spatial spread of infection, (B) time series constitutive immunity: (A) spatial spread of infection, (B)
of state variables. Parameter values are listed in time series of state variables. Parameter values are
Supplementary file 4. listed in Supplementary file 4.
https://elifesciences.org/articles/48401#video2 https://elifesciences.org/articles/48401#video3

Fitting of our model to in vitro data supported
expected immune phenotypes for different bat cell lines as described in the literature. Simple target
cell models that ignore the effects of immunity best recapitulated infectious time series derived from
IFN-deficient Vero cells, while models assuming induced immune processes most accurately repro-
duced trials derived from RoNi/7.1 (Rousettus aegyptiacus) cells, which possess a standard virus-
induced IFN-response. In most cases, models assuming constitutive immune processes best recre-
ated virus epidemics produced on PaKiTO1 (Pteropus alecto) cells, which are known to constitutively
express the antiviral cytokine, IFN-a (Zhou et al., 2016). Model support for induced immune
assumptions in fits to rVSV-MARYV infections on PaKiTO1 cells suggests that the constitutive IFN-o
expression characteristic of P. alecto cells may represent more of a constitutive immune priming pro-
cess than a perpetual, functional, antiviral defense. Results from mean field model fitting were addi-
tionally confirmed in spatially explicit stochastic simulations of each time series.

As previously demonstrated in within-host models for HIV (Coffin, 1995; Perelson et al., 1996;
Nowalk et al., 1995; Bonhoeffer et al., 1997, Ho et al., 1995), assumptions of simple target-cell
depletion can often provide satisfactory approximations of viral dynamics, especially those repro-
duced in simple in vitro systems. Critically, our model fitting emphasizes the need for incorporation
of top-down effects of immune control in order to accurately reproduce infectious time series
derived from bat cell tissue cultures, especially those resulting from the robustly antiviral PaKiTO1 P.
alecto cell line. These findings indicate that enhanced IFN-mediated immune pathways in bat reser-
voirs may promote elevated within-host virus replication rates prior to cross-species emergence. We
nonetheless acknowledge the limitations imposed by in vitro experiments in tissue culture, especially
involving recombinant viruses and immortalized cell lines. Future work should extend these cell cul-
ture studies to include measurements of multiple state variables (i.e. antiviral cells) to enhance epide-
miological inference.

The continued recurrence of Ebola epidemics across central Africa highlights the importance of
understanding bats’ roles as reservoirs for virulent zoonotic disease. The past decade has born wit-
ness to emerging consensus regarding the unique pathways by which bats resist and tolerate highly
virulent infections (Brook and Dobson, 2015; Xie et al., 2018; Zhang et al., 2013; Ahn et al.,
2019; Zhou et al., 2016; Ng et al., 2015; Pavlovich et al., 2018). Nonetheless, an understanding of
the mechanisms by which bats support endemic pathogens at the population level, or promote the
evolution of virulent pathogens at the individual level, remains elusive. Endemic maintenance of
infection is a defining characteristic of a pathogen reservoir (Haydon et al., 2002), and bats appear
to merit such a title, supporting long-term persistence of highly transmissible viral infections in iso-
lated island populations well below expected critical community sizes (Peel et al., 2012). Research-
ers debate the relative influence of population-level and within-host mechanisms which might
explain these trends (Plowright et al., 2016), but increasingly, field data are difficult to reconcile
without acknowledgement of a role for persistent infections (Peel et al., 2018; Brook et al., 2019).
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We present general methods to study cross-scale viral dynamics, which suggest that within-host per-
sistence is supported by robust antiviral responses characteristic of bat immune processes. Viruses
which evolve rapid replication rates under these robust antiviral defenses may pose the greatest haz-
ard for cross-species pathogen emergence into spillover hosts with immune systems that differ from
those unique to bats.

Materials and methods

or resource Designation Source or reference Identifiers Additional information
Cell line (Vero) Kidney (normal, ATCC CCL-81
epithelial, adult)
Cell line Kidney (normal, (Biesold et al., 2011, RoNi/7.1
(Rousettus aegyptiacus) epithelial, adult) Kiihl et al., 2011)
Cell line Kidney (normal, (Crameri et al., 2009) PaKiTO1
(Pteropus alecto) epithelial, adult)
Virus strain Replication competent, (Miller et al., 2012, r'VSV-G
recombinant vesicular Wong et al., 2010)
stomatitis Indiana
virus expressing eGFP
Virus strain Replication competent, (Miller et al., 2012, rVSV-EBOV
recombinant vesicular Wong et al., 2010)
stomatitis Indiana
virus expressing
eGFP and EBOV GP
in place of VSV G
Virus strain Replication competent, (Miller et al., 2012, rVSV-MARV
recombinant vesicular Wong et al., 2010)
stomatitis Indiana
virus expressing
eGFP and MARV GP
in place of VSV G
Reagent Hoechst 33342 ThermoFisher cat #: 62249
Fluorescent Stain
Reagent L-Glutamine Solution ThermoFisher cat #: 25030081
Reagent Gibco HEPES ThermoFisher cat #: 15630080
Reagent iTaq Universal SYBR BioRad cat #: 1725120
Green Supermix
Commercial Quick RNA Mini Prep Kit Zymo cat #:
assay or kit R1054
Commercial Invitrogen Superscript Il ThermoFisher cat #: 18080051
assay or kit cDNA Synthesis Kit
Software MatCont (version 2.2) (Dhooge et al., 2008) MatCont
R R version 3.6.0 (R Development R

“Note that primers for R. aegyptiacus and P. alecto B-Actin, IFN-0, and IFN-B genes are listed in the Supplementary file 6.

Core Team, 2019)

Cell culture experiments

Cells

All experiments were carried out on three immortalized mammalian kidney cell lines: Vero (African
green monkey), RoNi/7.1 (Rousettus aegyptiacus) (Kihl et al., 2011; Biesold et al., 2011) and
PaKiTO1 (Pteropus alecto) (Crameri et al., 2009). The species identifications of all bat cell lines was
confirmed morphologically and genetically in the publications in which they were originally described
(Kthl et al., 2011; Biesold et al., 2011; Crameri et al., 2009). Vero cells were obtained from
ATCC.
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Monolayers of each cell line were grown to 90% confluency (~9%x10° cells) in 6-well plates. Cells
were maintained in a humidified 37 °C, 5% CO, incubator and cultured in Dulbecco’s modified Eagle
medium (DMEM) (Life Technologies, Grand Island, NY), supplemented with 2% fetal bovine serum
(FBS) (Gemini Bio Products, West Sacramento, CA), and 1% penicillin-streptomycin (Life Technolo-
gies). Cells were tested monthly for mycoplasma contamination while experiments were taking
place; all cells assayed negative for contamination at every testing.

Previous work has demonstrated that all cell lines used are capable of mounting a type | IFN
response upon viral challenge, with the exception of Vero cells, which possess an IFN-B deficiency
(Desmyter et al., 1968; Rhim et al., 1969; Emeny and Morgan, 1979). RoNi/7.1 cells have been
shown to mount idiosyncratic induced IFN defenses upon viral infection (Pavlovich et al., 2018;
Kuzmin et al., 2017; Arnold et al., 2018; Kiihl et al., 2011; Biesold et al., 2011), while PaKiTO1
cells are known to constitutively express the antiviral cytokine, IFN-o (Zhou et al., 2016). This work
is the first documentation of IFN signaling induced upon challenge with the particular recombinant
VSVs outlined below. We verified known antiviral immune phenotypes via gPCR. Results were consis-
tent with the literature, indicating a less pronounced role for interferon defense against viral infec-
tion in RoNi/7.1 versus PaKiTO1 cells.

Viruses

Replication-capable recombinant vesicular stomatitis Indiana viruses, expressing filovirus glycopro-
teins in place of wild type G (rVSV-G, rVSV-EBOV, and rVSV-MARYV) have been previously described
(Wong et al., 2010; Miller et al., 2012). Viruses were selected to represent a broad range of antici-
pated antiviral responses from host cells, based on a range of past evolutionary histories between
the virus glycoprotein mediating cell entry and the host cell's entry receptor. These interactions
ranged from the total absence of evolutionary history in the case of rVSV-G infections on all cell lines
to a known receptor-level cell entry incompatibility in the case of rVSV-MARV infections on PaKiT01
cell lines.

To measure infectivities of rVSVs on each of the cell lines outlined above, so as to calculate the
correct viral dose for each MOI, NH4Cl (20 mM) was added to infected cell cultures at 1-2 hr post-
infection to block viral spread, and individual eGFP-positive cells were manually counted at 12-14 hr
post-infection.

Innate immune phenotypes via gPCR of IFN genes

Previously published work indicates that immortalized kidney cell lines of Rousettus aegyptiacus
(RoNi/7.1) and Pteropus alecto (PaKiT01) exhibit different innate antiviral immune phenotypes
through, respectively, induced (Biesold et al., 2011; Pavlovich et al., 2018; Kiihl et al., 2011,
Arnold et al., 2018) and constitutive (Zhou et al., 2016) expression of type | interferon genes. We
verified these published phenotypes on our own cell lines infected with rVSV-G, rVSV-EBOV, and
rVSV-MARYV via gPCR of IFN-o and IFN-B genes across a longitudinal time series of infection.

Specifically, we carried out multiple time series of infection of each cell line with each of the
viruses described above, under mock infection conditions and at MOls of 0.0001 and 0.001—with
the exception of rVSV-MARV on PaKiTO1 cell lines, for which infection was only performed at
MOI = 0.0001 due to limited viral stocks and the extremely low infectivity of this virus on this cell
line (thus requiring high viral loads for initial infection). All experiments were run in duplicate on 6-
well plates, such that a typical plate for any of the three viruses had two control (mock) wells, two
MOI = 0.0001 wells and two MOI = 0.001 wells, excepting PaKiTO1 plates, which had two control
and four MOI = 0.0001 wells at a given time. We justify this PaKiTO1 exemption through the expec-
tation that IFN-o. expression is constitutive for these cells, and by the assumption that any expression
exhibited at the lower MOI should also be present at the higher MOI.

For these gene expression time series, four 6-well plates for each cell line—virus combination were
incubated with virus for one hour at 37 °C. Following incubation, virus was aspirated off, and cell
monolayers were washed in PBS, then covered with an agar plaque assay overlay to mimic condi-
tions under which infection trials were run. Plates were then harvested sequentially at timepoints of
roughly 5, 10, 15, and 20 hr post-infection (exact timing varied as multiple trials were running simul-
taneously). Upon harvest of each plate, agar overlay was removed, and virus was lysed and RNA
extracted from cells using the Zymo Quick RNA Mini Prep kit, according to the manufacturer’s
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instructions and including the step for cellular DNA digestion. Post-extraction, RNA quality was veri-
fied via nanodrop, and RNA was converted to cDNA using the Invitrogen Superscript Ill cDNA syn-
thesis kit, according to the manufacturer’s instructions. cDNA was then stored at 4 °C and as a
frozen stock at —20 °C to await qPCR.

We undertook gPCR of cDNA to assess expression of the type | interferon genes, IFN-a and IFN-
B, and the housekeeping gene, B-Actin, using primers previously reported in the literature
(Supplementary file 6). For qPCR, 2 ul of each cDNA sample was incubated with 7 ul of deionized
water, 1 ul of 5 UM forward/reverse primer mix and 10 pl of iTagq Universal SYBR Green, then cycled
on a QuantStudio3 Real-Time PCR machine under the following conditions: initial denaturation at 94
°C for 2 min followed by 40 cycles of: denaturation at 95 °C (5 s), annealing at 58 °C (15 s), and exten-
sion at 72 °C (10 s).

We report simple 8-Ct values for each run, with raw Ct of the target gene of interest (IFN-o or
IFN-B) subtracted from raw Ct of the B-Actin housekeeping gene in Figure 1—figure supplement 6.
Calculation of fold change upon viral infection in comparison to mock using the 3-8-Ct method
(Livak and Schmittgen, 2001) was inappropriate in this case, as we wished to demonstrate constitu-
tive expression of IFN-a. in PaKiTO1 cells, whereby data from mock cells was identical to that pro-
duced from infected cells.

Plaque assays and time series imaging

After being grown to ~90% confluency, cells were incubated with pelleted rVSVs expressing eGFP
(rVSV-G, rVSV-EBOV, rVSV-MARV). Cell lines were challenged with both a low (0.0001) and high
(0.001) multiplicity of infection (MOI) for each virus. In a cell monolayer infected at a given MOI (m),
the proportion of cells (P), infected by k viral particles can be described by the Poisson distribution:

P(k) = <,
assumed that a ~90% confluent culture at each trial’s origin was comprised of ~9x10° cells and con-
ducted all experiments at MOls of 0.0001 and 0.001, meaning that we began each trial by introduc-
ing virus to, respectively, ~81 or 810 cells, representing the state variable ‘E’ in our theoretical
model. Low MOlIs were selected to best approximate the dynamics of mean field infection and limit
artifacts of spatial structuring, such as premature epidemic extinction when growing plaques collide
with plate walls in cell culture.

Six-well plates were prepared with each infection in duplicate or triplicate, such that a control
well (no virus) and 2-3 wells each at MOI 0.001 and 0.0001 were incubated simultaneously on the
same plate. In total, we ran between 18 and 39 trials at each cell-virus-MOI combination, excepting
r-VSV-MARYV infections on PaKiTO1 cells at MOI = 0.001, for which we ran only eight trials due to the
low infectivity of this virus on this cell line, which required high viral loads for initial infection. Cells
were incubated with virus for one hour at 37 °C. Following incubation, virus was aspirated off, and
cell monolayers were washed in PBS, then covered with a molten viscous overlay (50% 2X MEM/L-
glutamine; 5% FBS; 3% HEPES; 42% agarose), cooled for 20 min, and re-incubated in their original
humidified 37 °C, 5% CO, environment.

After application of the overlay, plates were monitored periodically using an inverted fluores-
cence microscope until the first signs of GFP expression were witnessed (~6-9.5 hr post-infection,
depending on the cell line and virus under investigation). From that time forward, a square subset of
the center of each well (comprised of either 64- or 36-subframes and corresponding to roughly 60%
and 40% of the entire well space) was imaged periodically, using a Celllnsight CX5 High Content
Screening (HCS) Platform with a 4X air objective (ThermoFisher, Inc, Waltham, 